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Local structures in zincblende-type random solid solutions
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China
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Abstract. The local structures of zincblende-type sofid solutions A)_,B.C can be described
with five distorted unit cells based on a phenomenological valence force-field approach. Bond
lengths and strain energies in these solid solntions can be obtained. The distorted feature of
the local structure is well described by the five distorted unit cells. This structural model has
been applied to 18 A;_,B,C systems. Resnlts are compared with those from extended x-ray
absorption fine structure and demonstrate that all the first- and second-neighbour bond lengths
are in agreement with experimental values, with the largest divergence being abont 0.01 A. in
addition, this model is also compared with the five special tetvabedra model.

1. Introduction

Zincblende-type random solid solutions, formulated as Ay_.B,C or AC;_;D,, belong to
F43m space group. The only difference between A;_;B,C and AC,_, D, is that the former
is anion-sharing and the latter is cation-sharing. For convenience, we do not distinguish
Ay B;C from AC,_;D;, and we consider only the former. The cations A and B randomly
occupy one set of face-centred cubic (FCC) positions, and the anions C occopy the other set.
Previous x-ray diffraction confirmed that the lattice constants of almost all pseudobinary
zincblende-type random solid solutions obey Vegard’s law. Under the virtual crystal
approximation (vCA) model, the first- and second-neighbour bond lengths are V3a(x)/4
and ~/2a(x)/2, respectively, where a(x) is the lattice constant of the solid solutions at
composition x. That is to say, the unit cells of the solid solutions are continuously expanded
or contracted with composition. On the other hand, Pauling’s notions suggest that bond
lengths and bond angles are approximately conservative quantities in different chemical
environments. Hence bond lengths and bond angles in solid solutions keep the same values
as in the pure end compounds. In this case, solid solutions are equivalent to mixtures of two
types of unit cells originating from the two pure end compounds. Recent extended x-ray
absorption fine struciure (EXAFS) experiments [1-6] show that the first-neighbour A—C and
B-C bond lengths as well as the second-neighbour C-A—C and C-B—C bond lengths tend to
retain the respective values in the pure end compounds, but the second-neighbour A-C-A,
A-C-B and B-C-B bond lengths approach those expected from the VCA model. It can
be seen that the vCa model and Pauling’s notions are two limiting possibilities. In fact,
there are some distortions in the local structures of zincblende-type random solid solutions.
How to accommodate these distortions is worthy of study. Some theoretical calculations
such as the quasichemical approximation (QCA) [7], ab initio pseudofunction total-energy
calculation [8], valence force-field (VFF) approach [3,9-19], Monte Carlo simulation [20]
and so on, were employed to treat this problem. Among them, the VFF approach has been
widely applied becanse of its conceptual simplicity and because the calculations are less
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time-consuming. This phenomenological VFF theory is simple and convenient to predict
the effects of strain on such structural features as bond lengths. Cai and Thorpe (CT) [17]
derived an analytic solution for the quaternary zincblende alloys A;_;B,C;_,D,, based on
the Kirkwood model [21). The CT theory was further applied to psendobinary zincblende
alloys A;_,B,C [18] and the binary alloy Si;_.Ge, [19]. Previous work [11, 16, 18] implied
that the geometrical configuration plays the dominant role in the bond lengths. In this paper,
starting from the microscopic geometrical configuration, we propose a statistical mode] that
involves five distorted unit cells (FDUC) with the binomial Bernoulli distribution, The
Harrison model [11,22) of vFF theory is used to determine the equilibrium bond lengths
and the strain energies of the five distorted unit cells. The FDUC model is applied to
18 A;1_;B,C systems and predicts the distorted feature of the local structure and the relative
strain energy. Both the first- and second-nreighbour bond lengths are in excelleat agreement
with those from EXAFS,

2. Local structural model

EXAFS results are an average effect over possible local structures, and x-ray diffraction
results reflect the average over EXAFS results. This implies that a model describing the local
structures of solid solutions must be statistical, and the selected structure units must be
independent of their environments so that their energy expression is also independent of the
environments. In our previous work [5], the five special tetrahedra (FST) model was used to
describe GaAs,Pi-., solid solutions. The first-neighbour bond lengths and the anion-anion
second bond lengths can be excellently reconstructed, but information about the cation—
cation second bond lengths cannot be obtained. It is thus clear that the FST mode! is not
satisfactory. Let us check the unit cells of pseudobinary A;_.B,C solid solutions again.
The cations A and B distribute randomly in the cation sublattice, and the anions C occupy
the anion sublattice. 'We select unit cells like that shown in figure 1, Evidently there are
four cations A and/or B inside the unit cell. Only five different unit cells can be found with
# B-type atoms and 4 — n A-type atoms (z =0, 1, 2, 3, 4), respectively. The possibility of
finding a unit cell with n B-type atoms and 4 — n A-type atoms can be described with the
binomial Bernoulli distribution [3, 51:

Pla, x) = (:)x”(l —x)tn (n=0,1,2734). (1)

Here, x is the composition of A;_,B,C solid solutions.

Figure 1. Distorted unit cell in Aj_.B,C solid
solutions. It contains # B atoms and 4 — n A atoms
(n =0, 1, 2, 3, 4), respectively. Note that the vnit
cell shown with n = 2 is undistorted from the parent
zincblende form. Cations A and B are shown as large
open and hatched circles, respectively, and the anions
C are shown as smaller filled circles.
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Schabel and Martins [16] stedied the convergence of elastic energy with supercell
size. Their results demonstrated that the average energy per atom dropped from 1.26 to
1.18 mRyd when the supercell size was increased from eight to 64 atoms. Use of a larger
cell with 216 atoms results in an insignificant increase in the energy of 0.02 mRyd/atormn.
This illustrates clearly that the near-neighbour interaction is dominant in diamond-like and
zincblende-type crystals. So we assume that the influence of disorder beyond the unit cells
does not affect the local distortion inside the unit cells, and the five distorted unit cells are
independent of cach other. The long-range effects are much smaller than the local ones even
if it is not necessary to assume that they are negligible. The net influence acting on the unit
cells will be close to zero. This allows us to deal with the strain energy independently for
each distorted unit cell and to count the local structure parameters according to the binomial
Bernoulli distribution. So only these interatomic actions inside each distorted unit cell need
to be included. The five distorted unit cells are selected to be independent structural units.

Obviously because A and B atoms have different sizes, as well as A—C and B-C bonds
have different bond strengths, the lattice sizes are different and the atoms do not locate at
regular positions in the five unit cells. The unit cell with n = 0 (or n = 4) is completely
the same as in pure AC (or BC) compounds with no distortion, The two unit cells with
n =1 and # = 3 have the same distorted features with a symmetrical axis along (111}
direction. For the unit cell with n = 2, besides the distortions along z direction, there are
also distortions in the middle xy plane. We assume that the shapes of the five distorted unit
cells still remain cubic. X-ray diffraction demonstrates that almost all lattice parameters
obey Vegard’s law in zincblende-type solid solutions. For the three distorted unit cells
with r = 1, 2 and 3 B-type atoms, it is natural to suppose that their lattice parameters are
(Baac + apc)/4, (aac + ape)/2 and (gaac + 3apc}/4, respectively. Here, aac and ape are
the lattice parameters of the pure end compounds AC and BC, respectively. The reasons
for introducing this assumption on the size of the cube are to avoid more variables and to
simplify the model as far as possible. In addition, based on the above assumption, although
it is not necessary, the lattice parameters of A;_,B,C solid solutions can be identified to
follow Vegard’s law strictly according to the binomial Bernoulli distribution. The atomic
positions and distorted features are given in appendix 1; all bond lengths and bond angles
in each unit cell can be expressed with only one variable p. A more complicated model is
also considered as given in appendix 2.

Keating’s model [23], on the strain-energy expression of diamond or zincblende structure
with vFF theory, has been widely applied. Martin [24] considered further the effect of point-
ion Coulombic forces on the strain energy. Afterwards, the phenomenological VFF theory
was simplified by Harrison and the strain energy can be written as {11, 22]:

1 d —dy : 1 2
E=3C) |~ ) +36 Do @

bond angle

Here, d is the distorted bond length, dy is the unstretched bond length in the pure end
compounds, and 86 is the deviation from the bond angle of a rectangular tetrahedron. Cp
and C) are the radial bond-stretching and angular bond-bending force constants, respectively.
They can be obtained with the elastic constants ¢1; and ¢;2 and the lattice constant @ [11, 12]
as follows:

Co = £a’(c11 + 2c12) 3)

t 3
Ci = gza’(en — a1).
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For the cross bond such as A-C-B, we select
€, = {(Cf° + CFO). )

Equation (2) is used to calculate the strain energies and to determine the equilibrium
atomic positions in the five distorted unit cells. The first term in equation (2) extends over all
nearest-neighbour atom pairs, standing for two-body interactions. The second term, standing
for three-body interactions, extends over all bond angles around every atom. Many-body
Interactions more than three-body are much smaller and can be neglected as claimed by
Keating [23].

The equilibrium bond lengths and the strain energies of the five distorted unit cells can
be easily found. Cnly those bond lengths and bond angles located inside each distorted unit
cell need to be counted. The final strain-energy expression depends only on one variable
p or 8. Under the assumption that the deviation § is small, the strain-energy expression is
minimized with respect to 8. Finally the equilibrium bond lengths and strain energy at any
composition x can be calculated according to

Yx) =Y Wm)Pn x)y® / > W(n)P(n, x). (5)

Here, Y™ stands for a bond length or strain energy in such a distorted unit cell with
B-type atoms and 4 — n A-type atoms; W(n) is the number of that bond length as shown
in table 1. For the strain energy E;, W(n} is always equal to 1 in each distorted unit cell,
Y (x) is the averaged value for that bond length or strain energy.

Table 1. Number of bonds in the five distorted unit cells of A;_,B,C solid solutions

(n=0,1,234).
Bond  A-C BC CA-C C-B-C  A-C-A A-C-B B-C-B
Win) 4(4-n) 4n 6(4-n)  6n mE—Tn+12)/2  nld—n) n(—1)72

3. Results

The FDUC model is applied to 18 A,_,B,C systems; the bond force constants and lattice
parameters listed in [11] are used as the input parameters. As examples, the first- and
second-neighbour bond lengths of cation-sharing GaAs,FP;_, and anion-sharing Ga;_,In, As
are shown in figures 2, 3, 4 and 5, respectively. The experimental values are respectively
quoted from [5] and [3] for GaAs,Pi..; and Gaj_,In,As. The strain energies of four systems
are shown in figure 6. It can be seen that all bond lengths are in good agreement with those
from EXAFS, with a deviation of about 0.01 A. Comparing the FDUC model with the FST
model [5], we find that the former is better. The FDUC model can give all first- and second-
neighbour bond lengths, whereas the FST model can only explain the first-neighbour bond
lengths and partial second-neighbour bond lengths. The two models are very similar with
the same distributions, and the obtained bond lengths are almost the same. This verifies
indirectly that the FST model is also reasonable but not perfect from the energetic point of
view.
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Figure 2, First-nearest-neighbour bond lengths in
GaAs, P)_, solid solutions versus composition x. Full
curves are valges calculated from the model; symbols
are expetimental values from EXAFs quoted from [5];
and broken line is expected from Vegard's law,
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Figure 4, First-nearest-neighbour bond lengths in

GAxIny_, As solid solutions versus composition x. Full
curves are values calcufated from the model; symbols
are experimental values from EXARs quoted from [2];
and broken line is expected from Vegard's law.
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Figure 3. Second-neatest-neighbour bond lengths in
GaAs, Py, solid solutions versus composition x. Full
cueves 1, 2, 3, 4 and 5 are respectively Ga-As-Ga, As~
Ga-As, As-Ga-P, P-Ga—P and Ga-P-Ga bond lengths
calculated from the model; symbols are experimental
values from EXAFs quoted from [3]; and broken line is
expected from Vegard's law,
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Figure 5. Second-nearest-neighbour bond lengths in
Gaj_,In;As solid sofutions versus composition x. Full
corves 1, 2, 3, 4 and 5 are respectively As-In-
As, In-As-In, In-As-Ga, Ga-~As-Ga and As—Ga-As
bond lengths calculated from the model; symbols are
experimental values from EXAFs quoted from [2]; and
broken line is expected from Vegard's law.

Although in zincblende-type A;_,B,C solid solutions, atoms deviate from the ideal
lattice positions and construct five distorted unit cells, by averaging the five distorted unit
cells the regular one as implied by vCa can be obtained. Therefore, long-range order is
still preserved, as indicated by x-ray diffraction. That is to say, the local structure distortion

does not destroy the long-range periodicity.

A more detailed consideration about the FDUC model is given in appendix 2. For the
unit cells with 7 = 1 and # = 3, there are almost no differences in the results obtained from
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appendix 1 and appendix 2. The divergence of angle & from 90° is less than 0.02° and that
of the lattice parameter a from ap is about 0.002 A, which leads to a negligible divergence
in the obtained bond lengths. For the unit cell with n = 2, a slightly larger divergence is
found. Especially for the second-neighbour bond lengths (Raca, Race and Rgcp) the largest
divergence from the EXAFS results [5] reaches about 0.02 A. We also consider the other
distorted features in this unit cell with or without the atomic position shift in the middle
xy plane; meanwhile, ¢ =b=c, 0 =8 =90 £ y,ora=b#c,a ==y =90°.
Comparing these different distorted configurations, we find that the one given in appendix 1
provides the best agreement with EXAFS results. Because the uncertainty of bond lengths
obtained from EXAFS is at the level of 0.01 A and fewer experimental results are available,
especially for the second-neighbour bond lengths, a more accurate distorted configuration
is difficult to construct. We believe that the FDUC model is sufficient to describe the local
structure distortion in zincblende-type solid solutions.

Using the Keating potential {23], Schabel and Martins (SM) [16] analysed the structural
relaxations of pseudobinary -V and II-IV semiconductor alloys with large periedic
supercells. Cai and Thorpe [18], with the Kirkwood potential [21], studied the length-
mismatch problem and gave an analytic solution under the assumptions that the force
parameters do not vary from site to site and that the unstrained atomic radii are additive.
Obviously their first assumption is inappropriate. For this reason, the effective-medium
approximation was introduced to solve the problem due to the force parameter disorder. In
this paper, by use of Harrison’s model [11,22] to describe the strain energy, we propose
a completely different local structural model. The local structures in zincblende-type solid
solutions can be described by five distorted unit cells at any composition. The results
of sM and €T as well as ours for both the first- and second-neighbour bond lengths are
in general agreement. It also demonstrates that the Kirkwood model, the Keating model
and the Harrison model, vsed to describe the strain energy in zincblende-type alloys, are
equivalent. Our work gives the microscopic distorted configuration in zincblende-type solid
solutions. We believe that the local distorted configuration is helpful to understand the
properties of these solid solutions. For a certain coordination environment, the interatomic
distances should be relatively fixed. The dependence of bond lengths on composition is the
resuit of averaging the different coordination environments, which corresponds to different
bond lengths. Strictly speaking, bond lengths in these alloys do not vary linearly with
composition as indicated by sM [16] and T [18], but the deviations from linearity are small
and can almost be neglected.

We also notice the model of Newman et af [11], which deals with five order compounds
with two or three variables. It was applied to 18 systems and can give the bond lengths at
composition x = 0.25, 0.50 and 0.75. The first-neighbour bond lengths are in very good
agreement with those from EXAFS, but the second-neighbour bond lengths are not. For
comparison, their results about the first-neighbour bond lengths are also listed in table 2.

The calculated strain energy E; as a function of composition has the shape of a parabola
and presents a maximum at about composition x = 0.5 as shown in figure 6. It is compared
with the excess enthalpy AH,, [11,25] of mixing of an alloy as in the regular solution
model, AH;, = x(1 — x)S2. The interaction parameter E is obtained by using the equation
E; = x(1 — x)E to fit the strain energy. The calculated E is very close to the experimental
2 (keal mol™!) as listed in table 2. It seems to imply that zincblende-type solid solutions
can be treated as regular solutions, and the excess enthalpy of mixing AH, of the alloys
is mainly the contribution of the stain energy. The larger the lattice parameter difference
Aag of the two pure end compounds, the greater is the strain energy E; or the parameter
E. Figure 7 shows the variation of the interaction parameter E with the difference of Aa
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of lattice parameters of the two pure end compounds. Approximately, we can obtain the
relation: E = 14.6{Aa)?. Here the units of E and Aa are kcal mol~! and A, respectively.
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Figure 6. Calculated strain energies of Gai.,In,P,  Figure 7. Variation of interaction parameter E (or strain
Gay.gIn As, Gaj_,In, Sb and GaAs,Pi_, solid solu- energy Eg) with the difference Aa of lattice parameters
tions in an averaged unit cefl. of the two pure end compounds. The open circles are
values obtained from the Fouc model, which follows
roughly the refation E = 14.6(Aa)? as indicated by the
fult curve.

The composition dependence of both the first- and second-neighbour bond lengths
is approximately linear. The slope of the variation of near-neighbour bond lengths with
composition is a structural characteristic quantity. Because the averaged bond lengths can
be described with the vCA model as indicated by x-ray diffraction, for the A;_,B,;C solid
solutions, the variation of first-neighbour bond lengths Rac and Rge should have the same
slope S, while the slope of the second-neighbour bond lengths Rcac and Rege is i, For
the bond lengths Rgcg, Raca and Racg, their variation with composition have slopes i,
53 and Ss, respectively, where S3 + 85 = 2Ss5. If we define S}’ and S;" as the slopes
expected from Vegard’s law for the variation of first- and second-neighbour bond lengths,
respectively, then the relative slopes of near-neighbour bond lengths are convenient for
comparison in different zincblende-type solid solutions. Table 2 lists all relative slopes
obtained from experiments and from this model. It demonstrates that $,/S} and S;/5)
are almost the same and about 0.24-0.25, whereas S3/Sy, 54/Sy and Ss/Sy are also the
same and about 0.75-0.76. Slopes S calculated from this model are in agreement with
experimental values. According to the results above, both the first- and second-neighbour
bond lengths in A;_,B,C solid solutions can be roughly (not accurately) expressed as:
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Rac = (ﬁ/ 16) [4eac + (aBc — gac)x]

Rpc = («/?:/ 15) [3apc + aac + (@sc — aac)x]

Rcac = (ﬁ/ 3) [4aac + (asc — aac)x]

Repe = (\/i/ 3) [3asc + aac + (asc — aac)x] (6)
Raca = (\/5/ 3) [4aac + 3(asc — aac)x]

Race = (~/§/ 16) fapc + Tanc + 6{apc — aac)x]

Rpcp = (\6/ 3) lasc + 3aac + 3(apc — aac)xl

Here, aac and apc are the lattice parameters of the pure end compounds AC and BC,
respectively. Equation (6) does not depend on any variable. Both the first- and second-
neighbour bond lengths can be easily found through the lattice parameters,

The local distortions around a B impurity doped in the AC host crystal correspond to
the case of the distorted unit cell with » = 1, as indicated in appendix 1. With the inclusion
of a B atom the lattice parameter is expanded (or compressed). Meanwhile, the first and
second neighbours around a B impurity are pushed aside (or pulled in), while the third or
more distant neighbours stay in their regular positions with no shift. This is because the
distortions decrease rapidly as distance increases. Similarly, the locat distortions around an
A impurity doped in the BC host crystal correspond to the case of the distorted unit cell
with n = 3.

The FDUC model requires only knowledge of the lattice parameters and the bond force
constants (or bulk moduli} of the pure end compounds. It can predict both the first-
and second-neighbour equilibrium bond lengths and strain energy at any composition in
zincblende-type solid solutions. The results obtained agree very well with those from
experiments. The success of the FDUC model in getting reasonable bond lengths suggests
that long-range interactions are, indeed, unimportant, and that the assumption on the size
of the cube for the five distorted unit cells is feasible. EXAFS experiments [3] indicate that
the anion C sublattice is more stable, which tends to maintain the same structure as in the
pure end compounds, while the mixed cation sublattice composed of displaceable atoms is
more flexible, which approaches the vCA model in A;_,B,C solid solutions. In the FDUC
model, these distorted features are involved in the five distorted unit cells. A more detailed
structure model can perhaps obtain more accurate results, but the improvement will be much
smaller, Summarizing the results, it can be concluded that FDUC model is reasonable and
effective in describing the local structures of zincblende-type solid solutions.

4. Conclusion

In this paper we investigate the local atomic structures of zincblende-type solid solutions
and propose a FDUC model. This model predicts the local distorted feature in zincblende-
type random solid solutions. Under the VFF approximation, the obtained first- and
second-neighbour bond lengths agree well with EXAFS results. Further, we give a simple
expression for both the first- and second-neighbour bond lengths, which can be obtained
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from information only about lattice parameters. The calculated vaiues of the strain energy
demonstrate that the local elastic distortions are the primary physical factor deciding the
excess enthalpy of mixing A Hp,.
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Appendix 1

Here we summarize the information required to find the strain energies and bond lengths
of the five distorted unit cells shown in figure 1. First, the five distorted unit cells retain
cubic shape and their lattice parameters are respectively fixed to those values evaluated from
Vegard’s law. The origin in each unit cell is chosen at the lower left corner. The two unit
cells with 7 = 0 and n = 4 are completely the same as in the pure end compounds AC and
BC, respectively. There are no distortions and shifts of atomic positions in them.

For the unit cells with n = 1, the atomic positions of ten C atoms, one B and three A
atoms are as follows:

C1:[0,0,0] C2:[0, p/2, p/2]

C3:[p/2,0, p/2] C4: [p/2, p/2.0]

C5:(a/f2,a/2,al C6:fa,a/2,a/2)

C7:la/2,a,a/2] C8:1[0,a,al (ALD
C9:[a,0,al Cl10: [a, a, 0]

B1:[p/4, p/4, p/4] Al [a/4, (5a + p)/8, (5a + p)/8]

A2 [(5a+ p)/8,a/d, (5a + p)/8] A3 :[(Sa+ p)/8, (5a + p)/8,a/4].

The unit cell with n = 3 has completely the same distorted features as in that with
n = 1; its atomic positions can also be written as in equation (Al.1) if we alter the B atom
for one A atom, and the three A atoms for the three B atoms.

Let us look at the unit cell with one B atom and three A atoms. Its lattice parameter
expands (or compresses) from @ac t0 (@pe + 3aac)/4. The nearest three C neighbours
of a B atom are pushed aside (or pulled in). These distortions propagate to the three
next-nearest-neighbour A atoms, and stop at the third-neighbour C atoms, which are still
situated at the regular face centres. The four A and B atoms, due to the actions of four
C neighbours, are forced to locate at the centroid of such a tetrahedron consisting of four
C atoms, respectively.

The atomic positions of ten C atoms, two B and two A atoms in the unit cell with n =2
are Jocated at:
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C1:[0,0,0] C2:[0, p/2, p/2)

C3:[p/2,0,p/2] Cd:la/2,a/2,0]

C5:[af2,a/2,a] C6:la, Ca— p)/2,p/2]

C7:[(2a — p)/2,a, p/2] C8:[0,4a,4a] (A12)
C9:{a,0,a] Ci10: [a,a, 0]

B1:[(a+ p)/8, @+ p)/8, p/4] B2:[(Ta — p)/8, (Ta — p}/8, p/4]

Al:[(Sa+ p)/8, (3a— p)/8, 2a + p)/4]
A2 : [(3a — p)/8. (5a + p)/8, (2a + p)/4).

In this unit cell, there are two A atoms and two B atoms. Its lattice parameter is
(aac + apc)/2 according to Vegard's law. The four C atoms, in the middle xy plane
of the unit cell, shift along the z direction and have an equal shift along the x direction
or y direction. The four A and B atoms also locate respectively at the centroid of such a
tetrahedron consisting of four C atoms. If the atomic positions of the two B atoms exchange
with those of the two A atoms, as we expect, the distorted features of the unit cell remain
invariable.

Here, we assume that the five distorted unit cells are still cubic, which greatly simplifies
the local structure model and reduces the number of variables. In each distorted unit cell,
the bond lengths, bond angles and strain energy depend only on the variable p or 8, defined
as

p=a(l+34). (AL.3)

Here, § is a small quantity, and p is very close to the lattice parameter evaluated from
Vegard's law. Under the condition that the strain energy is minimized, all equilibrivm bond
lengths, bond angles and strain energy are obtained,

Appendix 2

For the five distorted unit cells, more complicated distorted features are considered. Here
the assumption on the size of the cube is removed. We define g, b and & as the axial
vectors, and «, B, y are the relative angles. For the distorted unit cells with n = 1 and
n = 3, a reasonable assumption is thata = b = ¢, and @ = 8 = ¥. We define

a = ag(l + 81) p = ag(l + &) o = 90° + Js. (A2.1)

Here ap is the lattice parameter expected from Vegard’s law. The atomic positions in the
two unit cells are easily obtained from those in appendix 1 by the following transformation

matrix:
1 cose cosS&
T= ( 0 sine sinccosf ) . (A2.2)
0 0 sine sin @

Namely, X; = TX, where X; and X, represent the atomic positions in the unit cell with
r=1o0rr» =273 in appendix 1 and 2, respectively. Also, cos? = cose/(1 + cose). In the
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two unit cells, the distance a need not equal the laitice parameter @o and the angle is not
fixed to be 90°. We introduce three variables §;, &2 and d; to describe the distorted features;
31, 82 and J3 are small quantities and can be determined by minimizing the distorted energy.

For the distorted unit cel! with » = 2, we assume that a = & % ¢ and @ = § = 90°,
¥ # 90°. Four variables are introduced to describe the distorted features,

a = ag(l + 8;) e = ag(l + 82)

(A2.3)
p = ap(l + 83} y = 907 + §;.

The atomic positions in the unit cell can also be obtained from those in appendix 1 by the
transformation matrix

1 cosee O
T= (0 sine 0 ) . (A24)
0 0 «cfa

Similarly, the equilibrium atomic positions, bond lengths and strain energy can also be
obtained by minimizing the distorted energy.
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