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1. F'hys.: Condens. Matter 6 (1994) 44374448. Printed in the UK 

Local structures in zincblende-type random solid solutions 

Wu Zhonghua and Lu Kunquan 
Institute of Physics, Chinese Academy of Sciences. Beijing 100083, People's Republic of 
China 

Received 25 January 1994 

Abstract. The local smctures of zincblende-type solid solutions AI-,B,C can be described 
with five distorted unit cells based on a phenomenological valence force-fieeld approach. Bond 
lengths and strain energies in these solid solutions can be obtained. The distorted feature of 
the local shuchve is well described by the five distorted unit cells. ?his svuchlral model has 
been applied to 18 AI-,B,C systems. Results are compared with those from extended x-ray 
absorption fine snucture and demonstme that all the fmt- and ssond-neighbour bond l e y h  
are in 3 p m e n t  with experimental values. with the largest divergence being about 0.01 A. In 
addition. this model is also compared with the five special tetrahedra model. 

1. Introduction 

Zincblendetype random solid solutions, formulated as Al-,B,C or ACI-,D,, belong to 
F43m space group. The only difference between A,-,B,C and AC,-,D, is that the f o r "  
is anion-sharing and the latter is cation-sharing. For convenience, we do not distinguish 
Al,B,C from AC1,Dx, and we consider only the former. The cations A and B randomly 
occupy one set of face-centred cubic (FCC) positions, and the anions C occupy the other set. 
Previous x-ray diffraction confirmed that the lattice constants of almost all pseudobinary 
zincblendetype random solid solutions obey Vegard's law. Under the virtual crystal 
approximation (vCA) model, the first- and second-neighbour bond lengths are 4"3a(x)/4 
and &(x)/2, respectively, where a(x) is the Lattice constant of the solid solutions at 
composition x .  That is to say, the unit cells of the solid solutions are continuously expanded 
or contracted with composition. On the other hand, Pauling's notions suggest that bond 
lengths and bond angles are approximately conservative quantities in different chemical 
environments. Hence bond lengths and bond angles in solid solutions keep the same values 
as in the pure end compounds. In this case, solid solutions are equivalent to mixtures of two 
types of unit cells originating from the two pure end compounds. Recent extended x-ray 
absorption fine structure ( E m )  experiments [1-6] show that the first-neighbour A-C and 
B-C bond lengths as well as the second-neighbour C-A-C and C-B-C bond lengths tend to 
retain the respective values in the pure end compounds, but the second-neighbour A-C-A, 
A-C-B and B-C-B bond lengths approach those expected from the vm model. It can 
be seen that the VCA model and Pauling's notions are two limiting possibilities. In fact, 
there are some distortions in the local shuctures of zincblendetype random solid solutions. 
How to accommodate these distortions is worthy of study. Some theoretical calculations 
such as the quasichemical approximation (QCA) [7], ab initio pseudofunction total-energy 
calculation 181, valence force-field (m) approach [3,9-19], Monte Carlo simulation [20] 
and so on, were employed to treat this problem. Among them, the VFF approach has been 
widely applied because of its conceptual simplicity and because the calculations are less 
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time-consuming. This phenomenological VFP theory is simple and convenient to predict 
the effects of strain on such structural features as bond lengths. Cai and Thorpe (CT) [ 171 
derived an analytic solution for the quatemary zincblende alloys AI-,B,CI-,D,, based on 
the Kirkwood model [21]. The CT theory was further applied to pseudobinaxy zincblende 
alloys AI-,B,C [lS] and the binary alloy Sil-,Ge, [19]. Previous work [I 1.16,18] implied 
that the geometrical configuration plays the dominant role in the bond lengths. In this paper, 
starting from the microscopic geometrical configuration, we propose a statistical model that 
involves five distorted unit cells (FDUC) with the binomial Bernoulli distribution. The 
Harrison model 11 1,221 of VFF theory is used to determine the equilibrium bond lengths 
and the strain energies of the five distorted unit cells. The FDUC model is applied to 
18 AI-,B,C systems and predicts the distorted feature of the local structure and the relative 
strain energy. Both the first- and second-neighbour bond lengths are in excellent agreement 
with those from EMS. 

Wu Zhonghua and Lu Kunquan 

2. Local structural model 

EXAFS results are an average effect over possible local structures, and x-ray diffraction 
results reflect the average over E M S  results. This implies that a model describing the local 
structures of solid solutions must be statistical, and the selected structure units must be 
independent of their environments so that their energy expression is also independent of the 
environments. In our previous work [5 ] ,  the five special tetrahedra (FsT) model was used to 
describe GaAs,Pt-, solid solutions. The first-neighbour bond lengths and the anion-anion 
second bond lengths can be excellently reconstructed, but information about the cation- 
cation second bond lengths cannot be obtained. It is thus clear that the FST model is not 
satisfactory. Let us check the unit cells of pseudobinary Al-,B,C solid solutions again. 
The cations A and B distribute randomly in the cation sublattice, and the anions C occupy 
the anion sublattice. We select unit cells like that shown in figure 1. Evidently there are 
four cations A and/or B inside the unit cell. Only five different unit cells can be found with 
n B-type atoms and 4 - n A-type atoms (n = 0, 1 ,  2, 3,4), respectively. The possibility of 
finding a unit cell with n B-type atoms and 4 - n A-type atoms can be described with the 
binomial Bernoulli distribution [3,5]: 

Here, x is the composition of A,_,B,C solid solutions. 

(n=2) 

Figure 1. Distorted unit cell in Al-,B,C solid 
solutions. It contains n B atoms and 4 - n A ~ O ~ O M  

(n = 0.  I ,  2. 3, 4). respeclively. Note that the unit 
cell shown with n = 2 is undislorted from the parent 
zincblende form Cations A and B are shown as large 
open and halched circles, respectively, and the anions 
C are shown as smaller filled circles. 
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Schabel and Martins [161 studied the convergence of elastic energy with supercell 
size. Their results demonstrated that the average energy per atom dropped from 1.26 to 
1.18 mRyd when the supercell size was increased from eight to 64 atoms. Use of a larger 
cell with 216 atoms results in an insignificant increase in the energy of 0.02 mRyd/atom. 
This illustrates clearly that the near-neighbour interaction is dominant in diamond-like and 
zincblende-type crystals. So we assume that the influence of disorder beyond the unit cells 
does not affect the local distortion inside the unit cells, and the five distorted unit cells are 
independent of each other. The long-range effects are much smaller than the local ones even 
if it is not necessary to assume that they are negligible. The net influence acting on the unit 
cells will be close to zero. This allows us to deal with the strain energy independently for 
each distorted unit cell and to count the local structure parameters according to the binomial 
Bernoulli distribution. So only these interatomic actions inside each distorted unit cell need 
to be included. The five distorted unit cells are selected to be independent structural units. 

Obviously because A and B atoms have different sizes, as well as A-C and B-C bonds 
have different bond strengths, the lattice sizes are different and the atoms do not locate at 
regular positions in the five unit cells. The unit cell with n = 0 (or n = 4) is completely 
the same as in pure AC (or BC) compounds with no distortion. The two unit cells with 
n = 1 and n = 3 have the same distorted features with a symmetrical axis along (1 11) 
direction. For the unit cell with n = 2, besides the distortions along z direction, there are 
also distortions in the middle x y  plane. We assume that the shapes of the five distorted unit 
cells still remain cubic. X-ray diffraction demonstrates that almost all lattice parameters 
obey Vegard's law in zincblende-type solid solutions. For the three distorted unit cells 
with n = 1, 2 and 3 B-type atoms, it is natural to suppose that their lattice parameters are 
( 3 a ~ c  + aBC)/4, (aAC + aBc)/Z and (am 4- 3a~c)/4,  respectively. Here, aAc and UBC are 
the lattice parameters of the pure end compounds AC and BC, respectively. The reasons 
for introducing this assumption on the size of the cube are to avoid more variables and to 
simplify the model as far as possible. In addition, based on the above assumption, although 
it is not necessary, the lattice parameters of Al-,B,C solid solutions can be identified to 
follow Vegard's law strictly according to the binomial Bernoulli distribution. The atomic 
positions and distorted features are given in appendix 1; all bond lengths and bond angles 
in each unit cell can be expressed with only one variable p .  A more complicated model is 
also considered as given in appendix 2. 

Keating's model [23], on the strain-energy expression of diamond or zincblende structure 
with VFF theory, has been widely applied. Martin [24] considered further the effect of point- 
ion Coulombic forces on the strain energy. Afterwards, the phenomenological VFF theory 
was simplified by Harrison and the sbain energy can be written as [ I  1,221: 

Here, d is the distorted bond length, do is the unstretched bond length in the pure end 
compounds, and 86' is the deviation from the bond angle of a rectangular tetrahedron. CO 
and CI are the radial bond-stretching and angular bond-bending force constants, respectively. 
They can be obtained with the elastic constants CII and c1z and the lattice constant a [ 11,121 
as follows: 

CO = &a3(cll + 2CI2) 
c1 = Ea (CII - %). I 3  
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For the cross bond such as A-GB, we select 

1 c A C + c B C  
cl=%( I I ). (4) 

Equation (2) is used to calculate the strain energies and to determine the equilibrium 
atomic positions in the five distorted unit cells. The first term in equation (2) extends over all 
nearest-neighbour atom pairs. standing for two-body interactions. The second term, standing 
for three-body interactions, extends over all bond angles around every atom. Many-body 
interactions more than three-body are much smaller and can be neglected as claimed by 
Keating [23]. 

The equilibrium bond lengths and the strain energies of the five distorted unit cells can 
be easily found. Only those bond lengths and bond angles located inside each distorted unit 
cell need to be counted. The final strain-energy expression depends only on one variable 
p or S. Under the assumption that the deviation 6 is small, the strain-energy expression is 
minimized with respect to 6. Finally the equilibrium bond lengths and strain energy at any 
composition x can be calculated according to 

Here, Y(") stands for a bond length or strain energy in such a distorted unit cell with n 
B-type atoms and 4 - n A-type atoms; W ( n )  is the number of that bond length as shown 
in table 1. For the strain energy E$, W ( n )  is always equal to 1 in each distorted unit cell. 
? ( x )  is the averaged value for that bond length or strain energy. 

Table 1. Number of bonds in the five dislortd mil cells of Aa-,B,C solid solutions 
(n = 0, I .  2.3,4). 

Bond A-C B X  G A - C  G B - C  A-C-A A C B  B-C-B 

W ( n )  4(4-n) 4n 6(4- n) 6n ( n 2 - - 7 n + I 2 ) / 2  n(4-n) n ( n - 1 ) / 2  

3. Results 

The FDUC model is applied to 18 Ai-,B,C systems; the bond force constants and lattice 
parameters listed in [ I l l  are used as the input parameters. As examples, the first- and 
second-neighbour bond lengths of cation-sharing GaAsXP~-, and anion-sharing Gal-,In,As 
are shown in figures 2, 3, 4 and 5, respectively. The experimental values are respectively 
quoted from [5 ]  and [3] for GaAs,P~-, and Gat-,In,As. The strain energies of four systems 
are shown in figure 6. It can be seen that all bond lengths are in good agreement with those 
from EXAFS, with a deviation of about 0.01 A. Comparing the FDUC model with the FST 
model [5 ] ,  we find that the former is better. Tne FDUC model can  give all first- and second- 
neighbour bond lengths, whereas the FST model can only explain the first-neighbour bond 
lengths and partial second-neighbour bond lengths. The two models are very similar with 
the same distributions, and the obtained bond lengths are almost the same. This verifies 
indirectly that the FST model is also reasonable but not perfect from the energetic point of 
view. 
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0.0 0.2 0.4 0.6 0.8 1.0 
Composition X 

Figure 2. First-nearest-neighbour bond lengths m 
G ~ A S ~ P I - ,  solid solutions versus composition x. Full 
curves are values calculated hum the model; symbols 
are experimental values from ~ x w s  quoted hum [SI: 
and broken line is expected from Vegard's law. 

384 t 4 
0.0 0.2 O d  0.6 0.8 1.0 

Composition X 
Figure 3. Second-nearest-neighbour bond lengths in 
GaAS,Pi-, solid solutions versus campmition x .  Full 
curves 1.2.3.4 and 5 are respectively Ga-As-Ga As- 
Ga-As, /wja-P, P-Ga-P and Ga-P-Ga bond lengths 
calculated from the model; symbols are experimental 
values from M ~ F S  quoted from 151; and broken line is 
expeeted from Vegard's law. 
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0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 
Composition X Composition X 

Figure 4. First-nearest-neighbour bond lengths in Figure 5. Second-nearest-neighbour bond lengths in 
GA,lnl-,As solid solutions versus composition x. Full Gal-,ln,As solid solutions versus compasition x .  Full 
curves are values calculated from the model; symbols c u m  1. 2, 3, 4 and 5 are respectively As-In- 
are experimental values from WFS quoted from [2]; As, In-As-In, In-AS-Ga Ga-As-Ga and A s 4 3 - i ~  
and broken line is expected from Vegard's law. bond lengths calculated €"the model; symbols are 

experimental values from ~ x w s  quoted from [21; and 
broken line is expected from Vegard's law. 

Although in zincblende-type A,-,B,C solid solutions, atoms deviate from the ideal 
lattice positions and construct five distorted unit cells, by averaging the five distorted unit 
cells the regular one as implied by VCA can be obtained. Therefore, long-range order is 
still preserved, as indicated by x-ray diffraction. That is to say, the local shucture distortion 
does not destroy the long-range periodicity 

A more detailed consideration about the FDUC model is given in appendix 2. For the 
unit cells with n = 1 and n = 3. there are almost no differences in the results obtained from 
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appendix 1 and appendix 2. The divergence of angle 01 from 90" is less than 0.02" and that 
of the lattice parameter a from ao is about 0.002 A, which leads to a negligible divergence 
in the obtained bond lengths. For the unit cell with n = 2, a slightly larger divergence is 
found. Especially for the second-neighbour bond lengths (RAW, RAW and Rets) the largest 
divergence from the m s  results [5] reaches about 0.02 A. We also consider the other 
distorted features in this unit cell with or without the atomic position shift in the middle 
x y  plane; meanwhile, a = b = c, (Y = p = 90a # y .  or a = b # c, (Y = p = y = 90". 
Comparing these different distorted configurations, we find that the one given in appendix 1 
provides the best agreement with ExMS results. Because the uncertainty of bond lengths 
obtained from EXAFS is at the level of 0.01 8, and fewer experimental results are available, 
especially for the second-neighbour bond lengths, a more accurate distorted configuration 
is difficult to construct. We believe that the FDUC model is sufficient to describe the local 
structure distortion in zincblende-type solid solutions. 

Using the Keating potential [23], Schabel and Martins (SM) [16] analysed the structural 
relaxations of pseudobinary Ill-V and U-IV semiconductor alloys with large periodic 
supercells. Cai and Thorpe [lS], with the Kirkwood potential [21], studied the length- 
mismatch problem and gave an analytic solution under the assumptions that the force 
parameters do not vary from site to site. and that the unstrained atomic radii are additive. 
Obviously their first assumption is inappropriate. For this reason, the effective-medium 
approximation was introduced to solve the problem due to the force parameter disorder. In 
this paper, by use of Harrison's model [ 11,221 to describe the strain energy, we propose 
a completely different local structural model. The local structures in zincblende-type solid 
solutions can be described by five distorted unit cells at any composition. The results 
of SM and CT as well as ours for both the first- and second-neighbour bond lengths are 
in general agreement. It also demonstrates that the Kirkwood model, the Keating model 
and the Harrison model, used to describe the strain energy in zincblende-type alloys, are 
equivalent. Our work gives the microscopic distorted configuration in zincblende-type solid 
solutions. We believe that the local distorted configuration is helpful to understand the 
properties of these solid solutions. For a certain coordination environment, the interatomic 
distances should be relatively fixed. The dependence of bond lengths on composition is the 
result of averaging the different coordination environments, which corresponds to different 
bond lengths. Strictly speaking, bond lengths in these alloys do not vary lineady with 
composition as indicated by SM [ 161 and CT [IS], but the deviations from linearity are small 
and can almost be neglected. 

We also notice the model of Newman eta! [ 111, which deals with five order compounds 
with two or three variables. It was applied to 18 systems and can give the bond lengths at 
composition x = 0.25, 0.50 and 0.75. The first-neighbour bond lengths are in very good 
agreement with those from EXAFS, but the second-neighbour bond lengths are not. For 
comparison, their results about the first-neighbour bond lengths are also listed in table 2. 

The calculated strain energy Es as a function of composition has the shape of a parabola 
and presents a maximum at about composition x = 0.5 as shown in figure 6. It is compared 
with the excess enthalpy AH,  [11,25] of mixing of an alloy as in the regular solution 
model, A H ,  = x(1 - x)Q.  The interaction parameter E is obtained by using the equation 
E, = x(1- x ) E  to fit the strain energy. The calculated E is very close to the experimental 
C2 (kcal mol-') as listed in table 2. It seems to imply that zincblende-type solid solutions 
can be treated as regular solutions, and the excess enthalpy of mixing AH,,, of the alloys 
is mainly the conhibution of the stain energy. The larger the lattice parameter difference 
A a  of the two pure end compounds, the greater is the strain energy E, or the parameter 
E.  Figure 7 shows the variation of the interaction parameter E with the difference of Aa 

Wu Zhonghua and Lu Kunquan 
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of lattice parameters of the two pure end compounds. Approximately, we can obtain the 
relation: E = 1 4 . 6 ( A ~ ) ~ .  Here the units of E and Aa are kcal mol-' and A, respectively. 

Wu Zhonghuo ami La Kunquan 

0.0; O . l O B  0.00 

0.0 0.2 0.4 0.6 0.8 1.0 

Composition X 
Figurr 6. Calculated sh'ain energies of Oai-iln,P. 
Ga[-,ln,As, Gal_,In,Sb and GaAsZPi., solid solu- 
tions in an avenged unit cell. 

Aa CA) 
Figure 7. Varidion of interaction panmeter E (or strain 
energy E.) with the difference Aa of lattice parameters 
of the two pure end compounds. The open circles are 
valnes obtained from the FWC model, which follows 
roughly the relation E = 14.6(A0)~ I indicated by the 
FUII curve. 

The composition dependence of both the first- and second-neighbour bond lengths 
is approximately linear. The slope of the variation of near-neighbour bond lengths with 
composition is a structural characteristic quantity. Because the averaged bond lengths can 
be described with the VCA model as indicated by x-ray diffraction, for the AI-,B,C solid 
solutions, the variation of first-neighbour bond lengths RAC and RBc should have the same 
slope SI while the slope of the second-neighbour bond lengths R ~ C  and RCSC is SZ. For 
the bond lengths RBCB, RAC* and RACB, their variation with composition have slopes S3, 

S4 and Ss ,  respectively, where S, + S4 = 2Ss. If we define Sy and S: as the slopes 
expected from Vegard's law for the variation of first- and second-neighbour bond lengths, 
respectively, then the relative slopes of near-neighbour bond lengths are convenient for 
comparison in different zincblende-type solid solutions. Table 2 lists all relative slopes 
obtained from experiments and from this model. It demonstrates that Sl/S: and &/S; 
are almost the same and about 0.24-0.25, whereas S4/S: and Ss/S: are also the 
same and about 0.75-0.76. Slopes SI calculated from this model are in agreement with 
experimental values. According to the results above, both the first- and second-neighbour 
bond lengths in A,-,B,C solid solutions can be roughly (not accurately) expressed as: 
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RAC = (&/16) [ b A C  f (UBC -uAC)xl 

Here, uAc and aBC are the lattice parameters of the pure end compounds AC and BC, 
respectively. Equation (6) does not depend on any variable. Both the first- and second- 
neighbour bond lengths can be easily found through the lattice parameters. 

The local distortions around a B impurity doped in the AC host crystal correspond to 
the case of the distorted unit cell with n = 1, as indicated in appendix 1. With the inclusion 
of a B atom the lattice parameter is expanded (or compressed). Meanwhile, the first and 
second neighbours around a B impurity are pushed aside (or pulled in), while the third or 
more distant neighbours stay in their regular positions with no shift. This is because the 
distortions decrease rapidly as distance increases. Similarly, the local distortions around an 
A impurity doped in the BC host crystal correspond to the case of the distorted unit cell 
with n = 3. 

The FDUC model requires only knowledge of the lattice parameters and the bond force 
constants (or bulk moduli) of the pure end compounds. It can predict both the first- 
and second-neighbour equilibrium bond lengths and strain energy at any composition in 
zincblende-type solid solutions. The results obtained agree very well with those from 
experiments. The success of the FDUC model in getting reasonable bond lengths suggests 
that long-range interactions are, indeed, unimportant, and that the assumption on the size 
of the cube for the five distorted unit cells is feasible. EXAFS experiments [5]  indicate that 
the anion C sublattice is more stable, which tends to maintain the same structure as in the 
pure end compounds, while the mixed cation sublattice composed of displaceable atoms is 
more flexible, which approaches the VCA model in A,-,B,C solid solutions. In the FDUC 
model, these distorted features are involved in the five distorted unit cells. A more detailed 
structure model can perhaps obtain more accurate results, but the improvement will be much 
smaller. Summarizing the results, it can be concluded that muc model is reasonable and 
effective in describing the local structures of zincblende-type solid solutions. 

4. Conclusion 

In this paper we investigate the local atomic structures of zincblende-type solid solutions 
and propose a FDUC model. This model predicts the local distorted feature in zincblende 
type random solid solutions. Under the VFF approximation, the obtained first- and 
second-neighbour bond lengths agree well with E X m  results. Further, we give a simple 
expression for both the first- and second-neighbour bond lengths, which can be obtained 



4446 

from information only about lattice parameters. The calculated values of the strain energy 
demonstrate that the local elastic distortions are the primary physical factor deciding the 
excess enthalpy of mixing AH,,,. 

Wu Zhonghuu and Lu Kunquan 
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Appendix 1 

Here we summarize the information required to find the strain energies and bond lengths 
of the five distorted unit cells shown in figure I .  First, the five distorted unit cells retain 
cubic shape and their lattice parameters are respectively fixed to those values evaluated from 
Vegard’s law. The origin in each unit cell is chosen at the lower left comer. The two unit 
cells with n = 0 and n = 4 are completely the same as in the pure end compounds AC and 
BC, respectively. There are no distortions and shifts of atomic positions in them. 

For the unit cells with n = I ,  the atomic positions of ten C atoms, one B and three A 
atoms are as follows: 

c 1  : [O, O , O ]  

c3 : [P /2 ,  0, PI21 

c 2  : [O, Pl2,  PI21 

c4 : [ P P ,  P/2 ,  01 

C6 : [a ,  a j2 ,  a121 

C8 : [0 ,  a ,  a] 

CIO: [a ,a ,O]  

A1 : [a /4 ,  (5a + p ) / 8 ,  (5a + ~ ) / 8 1  

A3 : [(5a + p ) / 8 ,  (5a + p)/8.  a/41. 

C5 : [a /2 ,  al2,  a ]  

C l  : [a la ,  a ,  a /2 ]  

C9 : [ a ,  0, a ]  

B1 : I P / ~ ,   PI^. PPI 

(Al . l )  

: [(5a + ~ ) / 8 , a / 4 ,  (50 + p)/81 

The unit cell with n = 3 has  completely the same distorted features as in that with 
n = 1 ;  its atomic positions can also be written as in equation (Al.]) if we alter the B atom 
for one A atom, and the three A atoms for the three B atoms. 

Let us look at the unit cell with one B atom and three A atoms. Its lattice parameter 
expands (or compresses) from aAc to (net + 3 a ~ c ) / 4 .  The nearest three C neighbours 
of a B atom are pushed aside (or pulled in). These distortions propagate to the three 
next-nearest-neighbour A atoms, and stop at the third-neighbour C atoms, which are still 
situated at the regular face centres. The four A and B atoms, due to the actions of four 
C neighbours, are forced to locate at the centroid of such a tetrahedron consisting of four 
C atoms, respectively. 

The atomic positions of ten C atoms, two B and two A atoms in the unit cell with n = 2 
are located at: 
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c1 : [O, 0.01 

c 3  : [P/2, 0, PI21 
C5 : [ a / 2 ,  a /2 ,  a]  

c 7  : [(k - P ) / 2 ,  a, PI21 

c9 : [a, 0, a]  
(Al.2) 

B1 : [(a + p)/& (a + ~ ) / 8 .  ~ 1 4 1  

A1 : [(5a + p)/8, (3a - p ) / %  (2a + P)PI 
A2 : [(3n - p)/8, (50 + p)/8, (20 + p)/41. 

In this unit cell, there are two A atoms and two B atoms. Its lattice parameter is 
(aAC + aec)/2 according to Vegard's law. The four C atoms, in the middle x y  plane 
of the unit cell, shift along the z direction and have an equal shift along the x direction 
or y direction. The four A and B atoms also locate respectively at the centroid of such a 
tetrahedron consisting of four C atoms. If the atomic positions of the two B atoms exchange 
with those of the two A atoms, as we expect, the distorted features of the unit cell remain 
invariable. 

Here, we assume that the five distorted unit cells are still cubic, which greatly simplifies 
the local structure model and reduces the number of variables. In each distorted unit cell, 
the bond lengths, bond angles and strain energy depend only on the variable p or 6, defined 
as 

p = n( l  + 8). (A1.3) 

Here, 8 is a small quantity, and p is very close to the lattice parameter evaluated from 
Vegard's law. Under the condition that the strain energy is minimized, all equilibrium bond 
lengths, bond angles and strain energy are obtained. 

Appendix 2 

For the five distorted unit cells. more complicated distorted features are considered. Here 
the assumption on the size of the cube is removed. We define 8, & and i: as the axial 
vectors, and a, 0, y are the relative angles. For the distorted unit cells with n = 1 and 
n = 3, a reasonable assumption is that a = b = c,  and a = 0 = y .  We define 

a = ao(l +S,) p = ao(l +82) a = 90" + 8,. (A2. I )  

Here a. is the lattice parameter expected from Vegard's law. The atomic positions in the 
two unit cells are easily obtained from those in appendix 1 by the following transformation 
matrix: 

T =  0 sinor s inacos6 . (: s i n c ~ s ~ n 6  ) (A2.2) 

Namely, X, = TX,, where XI and X ,  represent the atomic positions in the unit cell with 
n = 1 or n = 3 in appendix 1 and 2, respectively. Also, cos6 = cosa/(l  + cosa). In the 
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two unit cells, the distance a need not equal the lattice parameter a0 and the angle is not 
fixed to be 90". We introduce three variables 61, Sz and SI to describe the distorted features; 
61.8~ and S3 are small quantifies and can be determined by minimizing the distorted energy. 

For the distorted unit cell with n = 2, we assume that a = b # c and 01 = ,5 = go", 
y # 90". Four variables are introduced to describe the distorted features, 

Wu Zhonghua and Lu Kunquan 

a = ad1 +SI) 

p = ao(l + 6s) 
c = ao(l+ SZ) 
y = 90" + 84. 

(-42.3) 

The atomic positions in the unit cell can also be obtained from those in appendix 1 by the 
transformation matrix 

(A2.4) 

Similarly, the equilibrium atomic positions, bond lengths and strain energy can also be 
obtained by minimizing the distorted energy. 
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